Studies on fused pyrimidine derivatives. Part $14 .{ }^{1}$ Formation and transformation of $[4+2]$ cycloadducts, cyclohepta $[g]$ quinazoline derivatives, by the reaction of 5-(arylaminomethylene)-1,3-dimethyl-6-methyleneperhydropyrimidine-2,4-diones with tropone

Ken Ikuno, ${ }^{a}$ Takashi Kobayashi, ${ }^{a}$ Toshio Harada, ${ }^{a}$ Michihiko Noguchi ${ }^{*, a}$ and Akikazu Kakehi ${ }^{b}$
${ }^{a}$ Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan
${ }^{\text {b }}$ Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan

Abstract

The reaction of 5-(arylaminomethylene)-1,3-dimethyl-6-methyleneperhydropyrimidine-2,4-diones 3 with tropone 4 gave two diastereoisomeric [$4+2$] cycloadducts, cyclohepta[g]quinazolines 5 and 6. These products correspond to endo- and exo-approach of enamine 3 to the 2,3 -double bond of tropone 4 , respectively. The chemical behaviour of the endo- and exo-adducts will be discussed. The X-ray structures of 5-(4-bromoanilino)-1,3-dimethyl-2,3,4,r-5,c-5a,10,c-10a,11-octahydro-1 H -cyclohepta[g]quinazoline-2,4, 10-trione, 5-(4-bromoanilino)-1,3-dimethyl-2,3,4,r-5,t-5a,10,t-10a,11-octahydro-1 H-cyclohepta[g]quinazol-ine-2,4,10-trione and 12,14-Dimethyl- r - $6 \mathrm{~b}, 9,10, c$-10a, 11, 12,13,14, $15, c-15 \mathrm{~b}, c-15 \mathrm{c}, 16$-dodecahydrobenzo[$c]$ cyclohepta[$k l]$ pyrimido $[5,4-h]$ acridine-10,13,15-trione are described.

 in previous papers, we ${ }^{2}$ described a dine-2,4-dione intermediates 3 via a thermal 1,5-hydrogen shift of the corresponding 5 -(substituted iminomethyl)-1,3,6-trimethyl-1,2,3,4-tetrahydropyrimidine-2,4-diones 2. The intermediates 3 are regarded as a 1,3-diene located at the periphery of a heterocyclic system and underwent a single and regio- and stereo-selective $[4+2]$ cycloaddition reaction with olefinic dienophiles to afford quinazoline derivatives (Scheme 1)

Scheme 1 Reagents and conditions: i, RNH_{2}, toluene or benzene, reflux; ii, 1,5-hydrogen shift; iii, methyl or ethyl acrylate ($\mathrm{CH}_{2}=\mathrm{CHZ}$)

Tropone 4 has emerged as one of the most typical multiple π electron systems (i.e., 2-, 4-, 6-, and 8π-systems) in the higher order cycloaddition reactions. Thermal reaction of simple dienes (4π) with tropone 4 proceed usually in the $[4+6]$ manner utilising the 6π-component of tropone. ${ }^{3}$ The $[4+6]$ cycloaddition reaction, however, was suppressed by nonhydrogen substituents at the reaction sites, and therefore the $[2+4]$ cycloaddition reaction predominated utilising the 2π component of the diene and the 4π-component of tropone instead. ${ }^{3 c}$

Only three examples were found for the $[4+2]$ cycloaddition
reaction of diene (4π) and tropone $(2 \pi) ; o$-xylylene cycloadded to the 4,5 -double bond of tropone to give a cyclohepta[b]naphthalene derivative together with the $[4+6]$ cycloadduct as a minor product. ${ }^{4}$ On the other hand, isobenzofuran reacted with tropone at its 2,3 -double bond as well as giving the $[4+6]$ cycloadduct. ${ }^{5}$

Tetrachlorocyclopentadienone ethylene ketal reacted with tropone to yield a $2: 1$ adduct resulting from double $[4+2]$ cycloadditions on the 2,3- and 6,7-bond of tropone. ${ }^{6}$

We examined, therefore, the reaction of dienes 3 with tropone 4 in order to obtain further information on the reaction features of the diene. ${ }^{3}$ The reaction of 5-(arylamino methylene)-1,3-dimethyl-6-methyleneperhydropyrimidine-2,4-diones 3 with tropone 4 gave two diastereoisomeric [$4+2]$ cycloadducts, cyclohepta[g]quinazolines 5 and 6 , in moderate total yields. The cycloaddition of dienes $\mathbf{3}$ occurred regioselectively on the 2,3-double bond in tropone 4 and the adducts corresponded to endo- and exo-approaching products, respectively. These endoand exo- $[4+2]$ cycloadducts exhibited different behaviour toward acid treatment.

Results and discussion

[4 + 2] Cycloaddition of 5,6-dimethyleneperhydropyrimidine-2,4-diones 3 with tropone 4

The reaction of 5-anilinomethylene-1,3-dimethyl-6-methylene-perhydropyrimidine-2,4-dione $\mathbf{3 a}$, formed in situ by the condensation and successive isomerisation of 1,3,6-trimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde 1 and aniline, with tropone 4 in 1,4-dioxane under reflux for 6 h gave two $1: 1$ adducts 5a and 6a in 26 and 25% yield, respectively, together with the formation of polymeric products (Scheme 2). The adducts 5 a and 6 a were shown to be primary products by the reaction of diene 3 a and with tropone 4 as follows; a similar reaction in benzene or tetrahydrofuran (THF) under reflux for 6 h gave almost a $1: 1$ mixture of 5 a and $\mathbf{6 a}$ (Table 1) and no interconversion between $5 \mathbf{a}$ and $6 \mathbf{a}$ was observed under the above conditions.

The structures 5a and 6a were elucidated on the basis of spectral data. The ${ }^{13} \mathrm{C}$ NMR spectra of products 5 a and $6 a$ were in accord with each other over the sp^{3} - and sp^{2}-carbon ranges

Table 1 Reaction of 5-(arylaminomethylene)-1,3-dimethyl-6-methyleneperhydropyrimidine-2,4-diones 3 with tropone 4 (Scheme 2)

Entry	Ar	Solvent	Time (t / h)	Products (Yield ${ }^{\text {/ } / \%)}$		
1	Ph	1,4-dioxane	6	5a (26)	6 a (25)	
2	Ph	benzene	6	5a (22)	6a (19)	
3	Ph	THF	6	5a (14)	6 a (13)	
4	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	1,4-dioxane	6	5b (19)	6b (20)	
5	4- $\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1,4-dioxane	6	5c (17)	6c (23)	
6	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	1,4-dioxane	6	5d (24)	6d (22)	
7	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	1,4-dioxane	6	5e (31)	6e (29)	
8	1-Naphthyl	1,4-dioxane	6	5f(15)	6f (27)	7f (12)
9	1-Naphthyl	1,4-dioxane	36		6 f (25)	7f (27)
10	2-Naphthyl	toluene	6	5g and 7g (22) ${ }^{\text {b }}$	6g (25)	
11	2-Naphthyl	1,4-dioxane	24		6g (15)	7g (15)

${ }^{a}$ Isolated yield. ${ }^{b}$ Combined yield because tricycle 5 g was partly isomerised to hexacycle $\mathbf{7 g}$ during purification.

7f $\mathrm{R}^{1} \mathrm{R}^{2}=-[\mathrm{CH}=\mathrm{CH}]_{2}-, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
a $\mathrm{Ar}=\mathrm{Ph}$
b $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-4$
Ar $=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$
e $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{IH}_{4} \mathrm{Mc}-3$
f $\mathrm{Ar}=1-$ Naphlhyl
$g \mathrm{Ar}=2-$ Naphlhyl
Scheme 2 Reaction of 5-(arylaminomethylene) diones 3 with tropone 4 in some refluxing solvents
except for only one sp^{3}-carbon signal, assigned to $\mathrm{C}-5 \mathrm{a}$. The ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectra of compounds 5 a and 6a revealed that both adducts had an alignment of methine ($5-\mathrm{H}$), methine ($5 \mathrm{a}-$ $\mathrm{H})$, methine $(10 \mathrm{a}-\mathrm{H})$, and methylene protons $(11-\mathrm{H})$ as well as of olefin $(9-H)$, olefin $(8-H)$, olefin $(7-H)$, olefin $(6-H)$, and methine proton $(5 \mathrm{a}-\mathrm{H})$. These findings indicate that the cycloaddition of diene 3a occurs on the 2,3-double bond of tropone 4 and that the 5 -(anilinomethylene)moiety of compound 3a is orientated in the opposite direction to that of the tropone carbonyl group. The stereochemistry of the adducts $5 \mathbf{a}$ and 6a was assigned from the coupling constants between 5and $5 \mathrm{a}-\mathrm{H}$; for adduct 5 a the methine proton at the 5 -position was observed as a broad singlet ($J \sim 0 \mathrm{~Hz}, 5,5 \mathrm{a}$-cis), while that for 6a appeared as a doublet ($J 2.9 \mathrm{~Hz}, 5,5 \mathrm{a}$-trans). The assignments were elucidated by nuclear overhauser enhancement (NOE) measurements of compounds 5a and 6a; irradiation of the $5 \mathrm{a}-\mathrm{H}$ caused a remarkable enhancement of the $5-\mathrm{H}$ signal for $5 \mathrm{a}(18 \%)$ and a little for that for compound 6a (1%). These suggest that tropone 4 adds formally to diene 3a with a Z-configuration ${ }^{2 e}$ at the 5 -methylene moiety in endo- and exo-manner to form 5 -anilino-1,3-dimethyl2,3,4,5,5a,10,10a, 11 -octahydro-1 H-cyclohepta $[g] q u i n a z o l i n e-~$ 2,4,10-triones 5a and 6a, respectively. More details on the reaction pathway will be discussed in the following paper. ${ }^{7}$

Similar reactions of 5-(4-bromoanilinomethylene)- 3b, 5-(4-methoxyanilinomethylene)- 3c, 5-(3-methoxyanilinomethyl-ene)- 3d and 5-(3-methylanilinomethylene)-substituted dione 3 e with tropone 4 gave mixtures of endo- and exo-adducts $5 \mathbf{b}-\mathbf{e}$ and $6 \mathbf{b}-\mathbf{e}$ in moderate total yields (Table 1). The structures of these adducts 5 and 6 were also assigned on the basis of their spectral data. Furthermore the structures of adducts $\mathbf{5 b}$ and $\mathbf{6 b}$ were unambiguously established by X-ray crystallographic analyses (see the Experimental section).

A similar reaction of 5-(1-naphthylaminomethylene)-substituted dione $3 f$ with tropone 4 in 1,4-dioxane under reflux for 6 h gave a mixture of three isomeric products $\mathbf{5 f}(15 \%)$, $\mathbf{6 f}(27 \%)$, and 7 f (12%) (Scheme 3). The proportions of the products

Scheme 3 Isomerisation of endo-cycloadducts 5 to acridines 7 in acid conditions (\mathbf{H}^{+}or Lewis acids)
depended upon the reaction conditions; prolonged heating (36 h) in 1,4 -dioxane gave compounds $6 f(25 \%)$ and $7 f(27 \%)$. These results suggested that product 7 f was a secondary one from endo-adduct $5 \mathbf{f}$ and, indeed, heating of compound $\mathbf{5 f}$ in 1,4dioxane under reflux gave compound $7 \mathbf{7 f}$ (Table 2).

The structure of compound 7 f was assigned to be a benzo $c c]$ cyclohepta $[k l]$ pyrimido $[5,4-h]$ acridine derivative on the basis of its spectral data, and was also confirmed by X-ray crystallographic analysis (see the Experimental section). These suggest that nucleophilic attack of the naphthalene π-electrons on the δ-position of the seven-membered $\alpha, \beta, \gamma, \delta$-unsaturated ketone moiety in compound $\mathbf{5 f}$ takes place to give a hexacyclic system containing a seven-membered non-conjugated ketone (δ_{CO} 208.7).
Similar results were obtained by the reaction of 5-(2-naphthylaminomethylene)-substituted dione $\mathbf{3 g}$ with tropone 4 in toluene or 1,4-dioxane under reflux which led to adducts 5 g , $\mathbf{6 g}$, and benzo $[a]$ cyclohepta $[k l]$ pyrimido $[5,4-h]$ acridine $7 \mathbf{g}$ (Scheme 2). Such transformation of tricycles 5 to hexacycles 7 was consistent with the results of PM3 calculations as described latter.

Table 2 Thermal and acid-assisted isomerisation of endo-adducts 5 to acridines 7

Entry	Substrate	Solvent	Acid catalyst	Temp.	Time (t / h)	Products (Yield ${ }^{a} / \%$)
1	5 f	1,4-dioxane	none	reflux	6	5f (42), 7f (42)
2	$5 f$	EtOH	none	reflux	24	7 f (91)
3	5g	EtOH	none	reflux	6	7 g (quant.)
4	5a	EtOH	$12 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ (1 drop)	reflux	2	7a (29)
5	5d	EtOH	$0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ (1 drop)	reflux	4	7d (61)
6	5d	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	AlCl_{3} (0.2 mol equiv.)	ambient	12	7d (86)
7	5e	EtOH	$0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ (1 drop)	reflux	17	7 e (52) ${ }^{\text {b }}$
8	5e	benzene	$\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)(0.1 \mathrm{~mol} \mathrm{equiv)}$.	reflux	,	$7 \mathrm{e}(40)^{\text {b }}$

${ }^{a}$ Isolated yield. ${ }^{b}$ Mixture ($\sim 1: 1$) of two isomers by its ${ }^{1} \mathrm{H}$ NMR spectrum.

The diene 3 added to the 2,3-double bond of tropone 4 regioselectively to afford endo- and exo- $[4+2]$ cycloadducts 5 and 6 as mentioned above. The tropone 4 , therein, behaved only as a 2π-component toward the diene 4π-system of compounds 3. This is probably the first example reported of the thermal reactions of tropone with 4π-dienes.

Chemical behaviours of endo- and exo-[4 +2] cycloadducts
In endo-adducts $\mathbf{5 f}$ and 5 g , the π-electrons of the naphthylamino moiety at the 5-position underwent a nucleophilic ring closure to afford hexacyclic heterocycles 7 f and 7 g under the reaction conditions. Our next concern, therefore, was focused on the chemical behaviour of the $[4+2]$ cycloadducts 5 and 6 . Other endo-adducts 5 than compounds $\mathbf{5 f}$ and 5 g did not show any change under the reaction conditions; neither did any of the exo- $[4+2]$ cycloadducts 6 . The isomerisation of tricycle $\mathbf{5 f}$ to hexacycle 7 f was shown to proceed smoothly in ethanol under reflux (Table 2). Utilisation of proton or Lewis acids facilitated the isomerisation $5 \longrightarrow 7$ (Scheme 3); treatment of compound $5 \mathbf{5}$ with one drop of $12 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid in ethanol under reflux for 2 h gave the acridine $7 \mathbf{a}$ in 29% yield. Similarly, acridines 7 d and 7 e (as two regioisomers) were obtained by the treatment of endo-adducts $5 \mathbf{d}$ and 5 e with protic and Lewis acids. The results of the transformation $5 \longrightarrow 7$ upon acid treatment are summarised in Table 2.

On the other hand, treatment of exo-adducts $\mathbf{6 a}, \mathbf{6 d}$ and $\mathbf{6 e}$ with Lewis acids under similar conditions gave intractable mixtures of products. Prolonged heating of compounds 6a, 6d and $\mathbf{6 e}$ in ethanol containing a higher concentration of hydrochloric acid led to 1,3-dimethyl-2,3,4,10-tetrahydro-1 H -cyclohepta[g]quinazoline-2,4,10-trione 8 in low to fair yields along with mixtures of unidentified products (Scheme 4). The results of conversion $6 \longrightarrow 8$ are demonstrated in Table 3. 1,4Elimination of the arylamine, accompanied by dehydrogenation, from substitute 5 was postulated for the formation of cycloheptaquinazoline 8 .

Scheme 4 Reagent and conditions: i, EtOH , hydrochloric acid, reflux
In order to obtain further information on the chemical behaviour of $[4+2]$ cycloadducts 5 and 6, PM3 molecular orbital calculations were examined. The structure optimisations of adducts 5a and 6a were performed by utilising the structures

Table 3 Acid treatment of exo-adducts 6 leading to the cycloheptaquinazoline 8

Entry	Substrate	Acid catalyst	$\begin{aligned} & \text { Time } \\ & (t / \mathrm{h}) \end{aligned}$	Product (Yield ${ }^{a} / \%$)
1	6a	$\begin{aligned} & 12 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl} \\ & \text { (10 drops) } \end{aligned}$	24	8 (29)
2	6d	$\begin{aligned} & 12 \mathrm{~mol} \mathrm{dm} \\ & \text { (1 drop) } \end{aligned}$	20	8 (48)
3	6 e	$\begin{aligned} & 12 \mathrm{~mol} \mathrm{dm} \\ & \text { (1 drop) } \end{aligned}$	20	8 (40)

${ }^{a}$ Isolated yield.

$7 \mathrm{a}-54.31 \mathrm{kcal} \mathrm{mol}^{-1}$

$7 \mathrm{a}^{\prime}-51.61 \mathrm{kcal} \mathrm{mol}^{-1}$

Fig. 1 Heats of formation for acridine derivatives 7 a and $7 \mathbf{a}^{\prime} .1 \mathrm{cal}=$ 4.184 J .
of compounds $\mathbf{5 b}$ and $\mathbf{6 b}$ as initial geometries. These revealed that the isomerisation of endo-adduct 5a to hexacycle 7a was a possible process and that, on the other hand, the nucleophilic attack of the anilino π-electrons in compound $6 \mathbf{6}$ on the sevenmembered unsaturated ketone moiety was impossible on structural grounds. The formation of the seven-membered $\beta, \gamma-$ unsaturated ketone system in compounds 7 was also confirmed by the PM3 calculations; the heat of formation for compound $7 \mathbf{a}$ (β, γ-unsaturated) was lower than that estimated for the regioisomer $7 \mathbf{a}^{\prime}$ (α, β-unsaturated) by $2.7 \mathrm{kcal} \mathrm{mol}^{-1} \dagger$ (Fig. 1).

In conclusion, we have reported here that 5-(arylamino methylene)-6-methyleneperhydropyrimidine-2,4-dione intermediates 3 cycloadd to the 2,3-double bond of tropone 4 regioselectively to afford endo- and exo- $[4+2]$ cycloadducts 5 and 6. In endo-adduct 5 the π-electrons of the arylamino moiety attack the δ-position of $\alpha, \beta, \gamma, \delta$-unsaturated ketone system derived from the tropone to afford the acridine 7 under both neutral and acidic conditions.

Experimental

Mps were measured on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were measured on a JASCO IR-Report-100 spectrophotometer from samples as
$\dagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

KBr pellets. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on JEOL GSX-400 and/or 270 spectrometers for solutions in deuteriochloroform unless otherwise stated. Tetramethylsilane was used as internal standard and J-values are given in Hz ; Splitting pattern ov indicates signals overlapping with each other. Mass spectra were determined on a JEOL JMS-021G-2 or JMS-D spectrometer. Elemental analyses were performed on a Hitachi 026 CHN analyser. All non-aqueous reactions were run under a positive pressure of argon. All solvents were dried by standard methods before use. The progress of reactions was monitored by TLC (Silica Gel 60F-254, Merck). Chromatographic purification was performed with Wakogel C-200 (100200 mesh, Wako Pure Chemical Industries) and/or Silica Gel 60 (230-400 mesh, Merck).

Reaction of 5-anilinomethylene-1,3-dimethyl-6-methyleneperhydropyrimidine-2,4-dione 3a with tropone 4. General procedures
To a refluxing solution of tropone $4(1.16 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $1,4-$ dioxane ($5 \mathrm{~cm}^{3}$) were added solutions of 1,3,6-trimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbaldehyde $1(0.182 \mathrm{~g}$, 1.0 mmol) and aniline ($0.109 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}$) in 1,4-dioxane (2.5 cm^{3} each) via a double-barrelled microfeeder over a period of 3 h. The reaction mixture was heated under reflux for an additional 6 h and the solvent was then evaporated off under reduced pressure. The residue was subjected to column chromatography on silica gel with hexane-ethyl acetate ($1: 1$) to give a mixture of the $[4+2]$ cycloadducts $5 \mathbf{a}$ and $\mathbf{6 a}(0.188 \mathrm{~g}$; 5a:6a~1:1). Flash chromatography of the mixture with hexane-ethyl acetate ($2: 1$) gave endo- $5 \mathbf{a}(26 \%)$ and exo-adduct 6a (25%), respectively.

5-Anilino-1,3-dimethyl-2,3,4,r-5,c-5a,10,c-10a,11-octahydro1 H -cyclohepta[g]quinazoline-2,4,10-trione 5a was obtained as orange plates from ethanol; mp 205-207 ${ }^{\circ} \mathrm{C}$ (Found: C, 69.2; $\mathrm{H}, 5.9 ; \mathrm{N}, 11.4 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 69.40; H, 5.83; N , $11.56 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1680 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}) 2.49(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $17.6,11-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5 \mathrm{a}-$ H), 3.10 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$), 3.31 and 3.52 (each 3 H , each s, 1 - and 3Me), $3.43(1 \mathrm{H}, \mathrm{d}, J 17.6,11-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 4.81(1 \mathrm{H}$, $\mathrm{br}, 5-\mathrm{H}), 5.89$ (1 H , dd, $J 7.8$ and $11.7,7-\mathrm{H}$), 6.00 ($1 \mathrm{H}, \mathrm{d}, J 12.2$, $9-\mathrm{H}), 6.30-6.39(2 \mathrm{H}$, ov, $6-$ and $8-\mathrm{H})$ and $6.56,6.65$ and 7.08 (total $5 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 27.4(\mathrm{C}-11), 28.2(1-\mathrm{Me}), 31.2$ (3Me), 43.4 (C-5a), 44.4 (C-10a), 49.4 (C-5), 108.4 (C-4a), 113.5, 117.7, 128.8 and 148.1 ($\mathrm{Ph}-\mathrm{C}$), 126.9 and 129.9 (C-7 and -9), 136.4 and 138.4 (C-6 and -8), 149.0 (C-11a), 151.9 (C-2), 161.5 (C-4) and $201.6(\mathrm{C}-10) ; m / z 364\left(\mathrm{M}^{+}\right)$.

5-Anilino-1,3-dimethyl-2,3,4,r-5,t-5a, 10,t-10a,11-octahydro1 H -cyclohepta[g]quinazoline-2,4,10-trione 6a was obtained as yellow plates from ethanol; mp 208-210 ${ }^{\circ} \mathrm{C}$ (Found C, $69.7 ; \mathrm{H}$, $5.7 ; \mathrm{N}, 11.6 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3380(\mathrm{NH})$ and 1700,1650 and 1640 (CO); $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.62-2.72\left(2 \mathrm{H}, \mathrm{ov}, 11-\mathrm{H}_{2}\right), 3.21-3.28(3 \mathrm{H}$, ov, $5 \mathrm{a}-$ and $10-\mathrm{H}$ and NH), 3.28 and 3.39 (each 3 H , each s, $1-$ and $3-\mathrm{Me}), 4.59(1 \mathrm{H}, \mathrm{d}, J 2.9,5-\mathrm{H}), 5.89(1 \mathrm{H}, \mathrm{d}, J 11.2,6-\mathrm{H})$, $6.08(1 \mathrm{H}, \mathrm{d}, J 12.7,9-\mathrm{H}), 6.17(1 \mathrm{H}$, ddd, $J 2.9,7.3$ and $11.2,7-$ $\mathrm{H}), 6.60-6.65(4 \mathrm{H}, \mathrm{ov}, 8-\mathrm{H}$ and Ph$)$ and $7.12(2 \mathrm{H}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(68$ $\mathrm{MHz}) 23.3$ (C-11a), 26.7 (1-Me), 29.5 (3-Me), 33.5 (C-5a), 44.1 (C-10a), 49.4 (C-5), 105.9 (C-4a), 111.2, 115.6, 125.9 and 145.8 (Ph-C), 127.9 and 129.2 (C-7 and -9), 136.4 and 138.1 (C-6 and $-8), 149.7$ (C-11a), 150.1 (C-2), 160.4 (C-4) and 199.0 (C-10); $m / z 364\left(\mathrm{M}^{+}\right)$.

5-(4-Bromoanilino)-1,3-dimethyl-2,3,4,r-5,c-5a,10,c-10a,11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 5b was obtained as orange plates from ethanol; mp $206-208^{\circ} \mathrm{C}$ (Found: C, 57.2; H, 4.6; N, 9.4. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires C, $57.02 ; \mathrm{H}, 4.57 ; \mathrm{N}, 9.50 \%) ; v_{\max } / \mathrm{cm}^{-1} 3360(\mathrm{NH})$ and 1690 and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.50(1 \mathrm{H}$, dd, $J 5.9$ and $17.6,11-\mathrm{H})$, $2.84(1 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.30$ and 3.52 (each 3 H , each s, 1- and 3-Me), 3.43 ($1 \mathrm{H}, \mathrm{d}, J 17.6,11-\mathrm{H}$), $3.69(1 \mathrm{H}, \mathrm{m}$,
$10 \mathrm{a}-\mathrm{H}), 4.75(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $7.3,5-\mathrm{H}), 5.89(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 11.7, $7-\mathrm{H}$), $5.99(1 \mathrm{H}, \mathrm{d}, J 12.8,9-\mathrm{H}), 6.30-6.37(2 \mathrm{H}$, ov, $6-$ and $8-\mathrm{H})$ and 6.44 and 7.15 (total $4 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 27.3$ (C-11), 28.2 (1-Me), 31.1 (3-Me), 43.3 (C-5a), 44.1 (C-10a), 49.3 (C-5), 107.9 (C-4a), 109.2, 114.9, 131.5 and 147.2 (Ph-C), 136.2 and 138.0 (C-6 and -8), 149.1 (C-11a), 151.8 (C-2), 161.5 (C-4) and $201.6(\mathrm{C}-10) ; m / z 443$ and $441\left(\mathrm{M}^{+}\right)$.

5-(4-Bromoanilino)-1,3-dimethyl-2,3,4,r-5,t-5a, 10,t-10a, 11 -octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione $\mathbf{6 b}$ was obtained as pale yellow plates from ethanol; mp $200-203^{\circ} \mathrm{C}$ (Found: C, 56.8; H, 4.6; N, 9.2\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690 and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.54-2.69\left(2 \mathrm{H}, \mathrm{ov}, 11-\mathrm{H}_{2}\right)$, 3.21-3.29 ($2 \mathrm{H}, \mathrm{ov}, 5 \mathrm{a}-\mathrm{H}$ and NH), 3.35 and 3.38 (each 3 H , each s , $1-$ and $3-\mathrm{Me}), 3.83(1 \mathrm{H}$, br d, $J 4.0,10 \mathrm{a}-\mathrm{H}), 5.59(1 \mathrm{H}$, br, $5-$ H), 5.89 (1 H, br d, $J 13.2,6-\mathrm{H}$), 6.13-6.21 ($2 \mathrm{H}, \mathrm{ov}, 7$ - and $9-\mathrm{H}$), $6.61(1 \mathrm{H}$, dd, $J 7.0$ and $12.5,8-\mathrm{H}) 6.52$ and 7.25 (total 4 H , $\mathrm{ArH}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 24.8(\mathrm{C}-11), 28.3$ ($1-\mathrm{Me}$), 31.0 ($3-\mathrm{Me}$), 35.0 (C-5a), 46.1 (C-10a), 51.7 (C-5), 107.2 (C-4a), 110.1, 114.9 , 132.9 and $145.5(\mathrm{Ph}-\mathrm{C}), 137.7$ and 138.7 (C-6 and -8), 151.2 and 151.5 (C-2 and -11a), 162.0 (C-4) and 200.3 (C-10); $m / z 443$ and $441\left(\mathrm{M}^{+}\right)$.

Structures of compounds $\mathbf{5 b}$ and $\mathbf{6 b}$ were confirmed by X-ray crystal-structure analyses and their crystal data are summarised in Table 4 (see below).

5-(4-Methoxyanilino)-1,3-dimethyl-2,3,4,r-5,c-5a,10,c-10a,11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 5c was obtained as orange plates from ethanol; $\mathrm{mp} 192-194^{\circ} \mathrm{C}$ (Found: C, 67.4; $\mathrm{H}, 6.0 ; \mathrm{N}, 10.8 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C , 67.16; H, 5.89; $\mathrm{N}, 10.68 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.49(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $17.6,11-\mathrm{H})$, $2.85(1 \mathrm{H}, \mathrm{br}, 5 \mathrm{a}-\mathrm{H}), 3.30$ and 3.51 (each 3 H , each s, 1 - and $3-$ Me), $3.40(1 \mathrm{H}, \mathrm{d}, J 17.6,11-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{br}, 10 \mathrm{a}-\mathrm{H}), 3.71(3 \mathrm{H}$, s, OMe), 3.30-3.71 (1 H, br, NH), $4.69(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 5.91(1 \mathrm{H}$, dd, $J 7.7$ and $11.5,7-\mathrm{H}), 5.99(1 \mathrm{H}, \mathrm{d}, J 12.5,9-\mathrm{H}), 6.30-6.40(2$ H , ov, $6-$ and $8-\mathrm{H}$) and 6.56 and 6.69 (total $4 \mathrm{H}, \mathrm{ArH}$); $\delta_{\mathrm{c}}(68$ MHz 27.3 (C-11), 28.2 (1-Me), 31.1 (3-Me), 43.1 and 44.5 (C5 a and -10a), 50.9 (C-5), 55.7 (OMe), 108.7 (C-4a), 114.4, 115.2, 142.4 and 152.3 (Ph-C), 126.7 and 130.3 (C-7 and -9), 136.3 and 138.5 (C-6 and -8), 149.0 (C-11a), 151.9 (C-2), 161.6 (C-4) and 201.4 (C-10); m/z 393 (M ${ }^{+}$).

5-(4-Methoxyanilino)-1,3-dimethyl-2,3,4,r-5,t-5a,10,t-10a, 11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 6c was obtained as pale orange plates from ethanol; $\mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$ (Found: C, 67.3; H, 6.0; N, 10.7\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3380(\mathrm{NH})$ and 1700,1660 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.53-2.71(2 \mathrm{H}, \mathrm{ov}, 11-$ H_{2}), $3.30-3.38(3 \mathrm{H}, \mathrm{ov}, 5 \mathrm{a}-\mathrm{and} 10 \mathrm{a}-\mathrm{H}$ and NH$), 3.36$ and 3.38 (each 3 H , each s, 1 - and 3-Me), 3.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.56 ($1 \mathrm{H}, \mathrm{d}$, $J 2.6,5-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{d}, J 11.4,6-\mathrm{H}), 6.11-6.18(2 \mathrm{H}$, ov, $7-$ and $9-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $12.5,8-\mathrm{H}$) and 6.65 and 6.78 (total $4 \mathrm{H}, \mathrm{ArH})$; $\delta_{\text {(}}(68 \mathrm{MHz}) 24.9$ (C-11), 28.2 ($1-\mathrm{Me}$), 31.0 ($3-\mathrm{Me}$), 35.1 (C-5a), 45.9 (C-10a), 52.9 (C-5), 55.8 (OMe), 107.8 (C-4a), 115.0, 115.6, 140.7 and 153.0 (Ph-C), 127.5 and 131.0 (C-7 and $-9), 137.6$ and 139.3 (C-6 and -8), 151.1 and 151.6 (C-2 and -11a), 162.2 (C-4) and $200.5(\mathrm{C}-10) ; m / z 393\left(\mathrm{M}^{+}\right)$.

5-(3-Methoxylanilino)-1,3-dimethyl-2,3,4, r-5,c-5a, 10,c-10a, 11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione $5 \mathbf{5 d}$ was obtained as yellow prisms from ethanol; mp 191-193 ${ }^{\circ} \mathrm{C}$ (Found: C, 67.5; H, 5.9; N, 10.5\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690,1650 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.49(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $17.6,11-\mathrm{H}), 2.86(1 \mathrm{H}, \mathrm{br}, 5 \mathrm{a}-\mathrm{H}), 3.13(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.30$ and 3.51 (each 3 H , each s, 1- and 3-Me), 3.41 ($1 \mathrm{H}, \mathrm{d}, J 17.6,11-\mathrm{H}$), $3.65(1 \mathrm{H}, \mathrm{br}, 10 \mathrm{a}-\mathrm{H}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.78(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H})$, 5.91 ($1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $11.4,7-\mathrm{H}), 5.99$ ($1 \mathrm{H}, \mathrm{d}, J 13.1,9-\mathrm{H}$), 6.31-6.40 ($2 \mathrm{H}, \mathrm{ov}, 6-$ and $8-\mathrm{H}$) and 6.11-6.24 and 6.99 (total $4 \mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 27.3(\mathrm{C}-11), 28.2$ ($1-\mathrm{Me}$), 31.1 ($3-\mathrm{Me}$), 43.2 (C-5a), 43.2 and 44.5 (C-5a and -10a), 49.5 (C-5), 55.0 (OMe), 99.8, 102.8, 106.7, 129.4, 149.1 and 160.3 (Ph-C), 108.2 (C-4a), 126.8 and 129.9 (C-7 and -9), 136.5 and 138.3 (C-6
and -8), 149.5 (C-11a), 151.9 (C-2), 161.6 (C-4) and 201.4 (C10); $m / z 393\left(\mathrm{M}^{+}\right)$.

5-(3-Methoxylanilino)-1,3-dimethyl-2,3,4,r-5,t-5a, 10,t-10a, 11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 6d was obtained as pale yellow plates from ethanol; mp 165$167^{\circ} \mathrm{C}$ (Found: C, $67.14 ; \mathrm{H}, 5.80 ; \mathrm{N}, 10.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3360$ (NH) and 1700,1690 and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.53-2.72(2$ H , ov, $11-\mathrm{H}_{2}$), 3.24-3.39 (2 H , ov, $\left.5 \mathrm{a}-\mathrm{and} 10 \mathrm{a}-\mathrm{H}\right), 3.36$ and 3.39 (each 3 H , each s, 1 - and $3-\mathrm{Me}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.64(1 \mathrm{H}, \mathrm{d}$, $J 2.6,5-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{d}, J 3.3$ and $12.5,6-\mathrm{H}), 6.12-6.32(5 \mathrm{H}, \mathrm{ov}$, $7-$ and $9-\mathrm{H}$ and ArH$), 6.59(1 \mathrm{H}$, dd, $J 7.0$ and $12.5,8-\mathrm{H})$ and 7.09 (1 H, t, J 8.1, ArH); $\delta_{\mathrm{C}}(68 \mathrm{MHz}) 24.9(\mathrm{C}-11), 28.3(1-\mathrm{Me})$, 31.0 (3-Me), 35.1 (C-5a), 46.2 (C-10a), 51.6 (C-5), 55.1 (OMe), $99.7,103.2,106.4,130.2,147.8$ and 160.8 (Ph-C), 107.5 (C-4a), 127.6 and 131.0 (C-7 and -9), 137.7 and 139.0 (C-6 and -8), 151.1 and 151.6 (C-2 and -11a), 162.0 (C-4) and 200.4 (C-10); m/z 393 $\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-5-(m-toluidino)-2,3,4,r-5,c-5a,10,c-10a,11-octa-hydro-1 H-cyclohepta $[\mathrm{g}]$ quinazoline-2,4,10-trione 5 e was obtained as orange prisms from ethanol; mp $199^{\circ} \mathrm{C}$ (Found: C , $70.1 ; \mathrm{H}, 6.2 ; \mathrm{N}, 11.0 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.01 ; \mathrm{H}, 6.14$; $\mathrm{N}, 11.12 \%$; $v_{\max } / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690 and $1640(\mathrm{CO})$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.49(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $18.0,11-$ $\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{br}, 5 \mathrm{a}-\mathrm{H}), 3.08(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 3.30$ and 3.51 (each 3 H , each s, 1 - and $3-\mathrm{Me}), 3.40(1 \mathrm{H}, \mathrm{d}, J 17.6,11-\mathrm{H}), 3.64(1 \mathrm{H}$, $\mathrm{br}, 10 \mathrm{a}-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $11.7,7-$ H), $5.99(1 \mathrm{H}, \mathrm{d}, J 12.5,9-\mathrm{H}), 6.30-6.49(5 \mathrm{H}, \mathrm{ov}, 6-\mathrm{and} 8-\mathrm{H}$ and ArH), $6.98(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $7.8, \mathrm{ArH}) ; \delta_{\mathrm{c}}(68 \mathrm{MHz}) 21.7(\mathrm{Me})$, 27.3 (C-11), 28.2 (1-Me), 31.1 (3-Me), 43.2 (C-5a), 44.5 (C-10a), 49.6 (C-5), 108.4 (C-4a), 110.6, 114.5, 118.8, 128.5, 138.3 and 148.1 (Ph-C), 136.3 and 138.4 (C-6 and -8), 149.0 (C-11a), 151.9 (C-2), $161.5(\mathrm{C}-4)$ and $201.5(\mathrm{C}-10) ; m / z 377\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-5-(m-toluidino)-2,3,4,r-5,t-5a,10,t-10a,11-octa-hydro-1H-cyclohepta $[\mathrm{g}]$ quinazoline-2,4,10-trione 6 e was obtained as yellow needles from ethanol; mp 214-215 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 69.7 ; \mathrm{H}, 6.2 ; \mathrm{N}, 10.9 \%) ; v_{\max } / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690,1650 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.26(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.49-2.70(2 \mathrm{H}$, ov, $11-\mathrm{H}_{2}$), 3.25-3.36(3 H, ov, 5a- and $10 \mathrm{a}-\mathrm{H}$ and NH), 3.36 and 3.39 (each 3 H , each s, 1 - and $3-\mathrm{Me}$), $4.66(1 \mathrm{H}, \mathrm{d}, J 2.6,5-\mathrm{H})$, $5.89(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 10.4,6-\mathrm{H}), 6.13-6.20(2 \mathrm{H}$, ov, $7-$ and $9-\mathrm{H})$, 6.44-6.46 (2 H, ArH), 6.56-6.63 ($2 \mathrm{H}, \mathrm{ov}, 8-\mathrm{H}$ and ArH) and $7.07(1 \mathrm{H}$, dd, $J 7.3$ and $7.7, \mathrm{ArH}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 21.7(\mathrm{Me}), 24.9$ (C-11), 28.3 (1-Me), 31.0 (3-Me), 35.1 (C-5a), 46.1 (C-10a), 51.6 (C-5), 107.6 (C-4a), 110.4, 114.2, 119.4, 129.3, 139.1, and 146.5 ($\mathrm{Ph}-\mathrm{C}$), 127.6 and 131.0 (C-7 and -9), 137.6 and 139.1 (C-6 and -8), 151.0 and $151.6(\mathrm{C}-2$ and $-11 \mathrm{a}), 162.0(\mathrm{C}-4)$ and 200.4 (C-10); m/z $377\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-5-(1-naphthylamino)-2,3,4,r-5,c-5a,10,c-10a, 11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione $\quad \mathbf{f f}$ was obtained as orange crystals and was subjected to analytical treatment without recrystallisation; mp $160-162^{\circ} \mathrm{C}$ (Found: C, 72.2; H, 5.7; N, 9.9. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 72.62$; $\mathrm{H}, 5.61 ; \mathrm{N}, 10.16 \%) ; v_{\max } / \mathrm{cm}^{-1} 3400(\mathrm{NH})$ and 1700,1650 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.52(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $17.6,11-\mathrm{H})$, $2.96(1 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-\mathrm{H}), 3.27$ and 3.53 (each 3 H , each s, 1- and 3Me), 3.27-3.53 (2 H, ov, $11-\mathrm{H}$ and NH), 3.71 ($1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}$), $5.09(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 5.76(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $11.7,7-\mathrm{H}), 5.89(1 \mathrm{H}$, $\mathrm{d}, J 12.1,9-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $12.1,8-\mathrm{H}), 6.33(1 \mathrm{H}, \mathrm{dd}$, $J 6.6$ and $11.7,6-\mathrm{H}$) and $6.85,7.14-7.42$ and $7.67-7.71$ (total 7 $\mathrm{H}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 27.4(\mathrm{C}-11), 28.1$ (1-Me), 31.0 (3-Me), 43.4 and 44.5 (C-5a and -10a), 48.2 (C-5), 108.2 (C-4a), 106.0, $117.4,120.5,123.9,124.5,125.4,126.1,128.3,134.4$ and 143.1 (naphthyl-C), 126.5 and 130.0 (C-7 and -9), 136.1 and 138.4 (C6 and -8$), 149.6$ and 151.8 (C-2 and -11a), 161.6 (C-4) and 201.8 (C-10); m/z $413\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-5-(1-naphthylamino)-2,3,4,r-5,t-5a,10,t-10a,11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 6 f was obtained as yellow needles from ethanol-chloroform; mp 224
$225{ }^{\circ} \mathrm{C}$ (Found: C, $72.5 ; \mathrm{H}, 5.6 ; \mathrm{N}, 10.2 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400(\mathrm{NH})$ and 1700,1660 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.58-2.78(2 \mathrm{H}$, ov, $11-\mathrm{H}_{2}$), 3.41 and 3.51 (each 3 H , each s, 1 - and 3-Me), 3.36-3.50 ($3 \mathrm{H}, \mathrm{ov}, 5 \mathrm{a}-\mathrm{and} 10 \mathrm{a}-\mathrm{H}$ and NH), $4.88(1 \mathrm{H}, \mathrm{d}, J 2.2,5-\mathrm{H}), 5.95$ (1 H , br d, $J 11.4,6-\mathrm{H}), 6.11-6.22(2 \mathrm{H}, \mathrm{ov}, 7-$ and $9-\mathrm{H}), 6.59(1$ H , dd, $J 7.0$ and $12.5,8-\mathrm{H}$) and 6.76, 7.26-7.46 and 7.76-7.79 (total 7 H , naphthyl-H); $\delta_{\mathbf{c}}(68 \mathrm{MHz}) 25.1(\mathrm{C}-11), 28.3(1-\mathrm{Me})$, 31.0 (3-Me), 34.3 (C-5a), 46.6 (C-10a), 51.7 (C-5), 107.4 (C-4a), $105.6,118.8,120.2,124.1,124.9,125.8,126.3,128.6,134.4$ and 141.5 (naphthyl-C), 127.7 and 131.1 (C-7 and -9), 137.6 and 139.0 (C-6 and -8), 151.4 and 151.6 (C-2 and -11a), 162.2 (C-4) and $200.5(\mathrm{C}-10) ; m / z 413\left(\mathrm{M}^{+}\right)$.

12,14-Dimethyl-r-6b,9,10,c-10a,11,12,13,14,15,c-15b,c-15c, 16-dodecahydrobenzo[c]cyclohepta $[\mathrm{kl}]$ pyrimido $[5,4-\mathrm{h}]$ acridine-10,13,15-trione 7 f was obtained as pale brown plates from ethanol-dichloromethane; mp 241-243 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.7; $\mathrm{H}, 5.6 ; \mathrm{N}, 10.2 \%) ; v_{\max } / \mathrm{cm}^{-1} 3380(\mathrm{NH})$ and 1700,1680 and $1660(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.39(1 \mathrm{H}$, dd, $J 6.2$ and 18.3 , $11-$ $\mathrm{H}), 2.57(1 \mathrm{H}$, dd, $J 8.1$ and $19.8,9-\mathrm{H}), 2.74-2.86(2 \mathrm{H}$, ov, $9-$ and $15 \mathrm{c}-\mathrm{H}), 3.31(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and $18.3,11-\mathrm{H}), 3.41$ and 3.51 (each 3 H , each s, $12-$ and $14-\mathrm{Me}), 3.78(1 \mathrm{H}$, dd, $J 6.2$ and 6.4 , $10 \mathrm{a}-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{d}, J 3.7,15 \mathrm{~b}-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{t}, J 9.9,6 \mathrm{~b}-\mathrm{H})$, $4.86(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 5.91(1 \mathrm{H}$, ddd, $J 4.4,8.1$, and $10.4,8-\mathrm{H})$, $6.59(1 \mathrm{H}$, ddd, $J 2.9,9.9$, and $10.4,7-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J 8.4,5-$ H), $7.26(1 \mathrm{H}, \mathrm{d}, J 8.4,1-\mathrm{H}), 7.37-7.44(2 \mathrm{H}, \mathrm{ov}, 2-\mathrm{and} 3-\mathrm{H})$ and 7.63-7.75 (2 H, ov, $4-$ and $6-\mathrm{H}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 26.6(\mathrm{C}-11), 28.2$ ($12-\mathrm{Me}$), $31.0(14-\mathrm{Me}$), 37.1 and 38.0 (C-9 and -15 c), 41.5 and 43.8 (C-6b and -10a), 48.9 (C-15b), 107.3 (C-15a), 117.6 (C-6a), 119.4 and $119.9(\mathrm{C}-1$ and -5$), 122.8(\mathrm{C}-16 \mathrm{~b}), 125.5$ and 125.6 (C-2 and -3), 127.4, 128.2, 128.4 and 132.6 (C-4, $-6,-7$ and -8), 135.4 (C-4a), 140.8 (C-16a), 149.9 and 151.9 (C-11a and -13), 162.7 (C-15), and 208.7 (C-10); $m / z 413\left(\mathrm{M}^{+}\right)$.

The reaction mixture of 5-(2-naphthylamino)-substituted dione 3 g with tropone 4 was heated under reflux for 6 h . Usual work-up with short-column chromatography on silica gel gave a mixture of endo- 5 g and exo-adduct 6 g (in total yield of 47%). endo-Adduct 5 g was partly isomerised to the acridine 7 f during further purification.

1,3-Dimethyl-5-(2-naphthylamino)-2,3,4,r-5,c-5a,10,c-10a,11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione 5 g was obtained as orange crystals and was subjected to analytical treatment without recrystallisation; mp $203-205^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 9.7 \%$) $v_{\text {max }} / \mathrm{cm}^{-1} 3380(\mathrm{NH})$ and 1700,1660 and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.48(1 \mathrm{H}$, dd, J 5.9 and 17.6, $11-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{m}, 5 \mathrm{a}-\mathrm{H}), 3.30$ and 3.52 (each 3 H , each s, $1-$ and $3-\mathrm{Me}), 3.42(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 17.6,11-\mathrm{H}), 3.30-3.52(1 \mathrm{H}$, ov, NH), $3.67(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{dd}, J$ 7.8 and $11.7,7-\mathrm{H}), 6.00(1 \mathrm{H}, \mathrm{d}, J 12.2,9-\mathrm{H}), 6.26(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $12.2,8-\mathrm{H}), 6.40(1 \mathrm{H}$, dd, $J 6.8$ and $11.7,6-\mathrm{H})$ and 6.73, $6.90,7.15,7.31$ and $7.52-7.62$ (total 7 H , naphthyl-H); $\delta_{\mathrm{C}}(68$ $\mathrm{MHz}) 27.4(\mathrm{C}-11), 28.3$ (1-Me), 31.0 (3-Me), 43.4 and 44.5 (C5a and -10a), 48.2 (C-5), 108.2 (C-4a), 106.2, 117.4, 120.5, 123.9, $124.5,125.4,126.1,134.4$ and 143.1 (naphthyl-C), 126.5 and $130.0(\mathrm{C}-7$ and -9$), 128.3(\mathrm{C}-3), 136.1$ and 138.4 (C-6 and -8), 149.6 (C-11a), 151.8 (C-2), 161.6 (C-4) and $201.8(\mathrm{C}-10) ; m / z$ $413\left(\mathrm{M}^{+}\right)$.

1,3-Dimethyl-5-(2-naphthylamino)-2,3,4,r-5,t-5a,10,t-10a,11-octahydro-1H-cyclohepta[g]quinazoline-2,4,10-trione $\mathbf{6 g}$ was obtained as yellow needles from ethanol-chloroform; mp 172$174{ }^{\circ} \mathrm{C}$ (Found: C, $72.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 9.9 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3350$ (NH) and 1720,1700 and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.53-2.70(2 \mathrm{H}, \mathrm{ov}$, $11-\mathrm{H}_{2}$), $3.24-3.34(1 \mathrm{H}, \mathrm{ov}, 5 \mathrm{a}-\mathrm{H}), 3.34$ and 3.35 (each 3 H , each $\mathrm{s}, 1-\mathrm{and} 3-\mathrm{Me}), 3.46(1 \mathrm{H}, \mathrm{m}, 10 \mathrm{a}-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 4.78(1$ $\mathrm{H}, \mathrm{d}, J 2.2,5-\mathrm{H}), 5.93(1 \mathrm{H}$, br d$, J 11.4,6-\mathrm{H}), 6.09-6.20(2 \mathrm{H}$, ov, $7-$ and $9-\mathrm{H}), 6.56(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $12.5,8-\mathrm{H})$ and $6.83-$ 6.87, $7.20,7.35$ and $7.59-7.66$ (total 7 H , naphthyl-H); $\delta_{\mathrm{C}}(68$ $\mathrm{MHz}) 24.8$ (C-11), 28.2 (1-Me), 30.9 (3-Me), 34.7 (C-5a), 46.2 (C-10a), 51.6 (C-5), 107.2 (C-4a), 105.1, 118.2, 122.3, 126.0,
126.3, 127.5, 127.9, 130.9, 134.9 and 144.0 (naphthyl-C), 127.6 and 130.9 (C-7 and -9), 137.6 and 139.0 (C-6 and -8), 151.2 and 151.4 (C-2 and -11a), 162.0 (C-4) and 200.3 (C-10); m/z 413 $\left(\mathrm{M}^{+}\right)$.

10,12-Dimethyl-r-4c, 7,8,c-8a, $9,10,11,12,13, \mathrm{c}-13 \mathrm{~b}, \mathrm{c}-13 \mathrm{c}, 14-$ dodecahydrobenzo[a]cyclohepta $[\mathrm{kl}]$ pyrimido $[5,4-\mathrm{h}]$ acridine-8, 11,13-trione 7 g was obtained as prisms from ethanoldichloromethane; mp $260^{\circ} \mathrm{C}$ (decomp.) (Found: C, 72.4; H, 5.5; $\mathrm{N}, 9.85 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690 and $1650(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D} ; 270 \mathrm{MHz}\right) 2.62(1 \mathrm{H}$, br d, $J 19.5,9-\mathrm{H}), 3.09-3.24$ ($2 \mathrm{H}, \mathrm{ov}, 7-\mathrm{H}_{2}$), $3.47(1 \mathrm{H}, \mathrm{d}, J 19.5,9-\mathrm{H}), 3.60$ and 3.72 (each 3 H , each s, $10-$ and $12-\mathrm{Me}$), $3.60-3.84(2 \mathrm{H}, \mathrm{ov}, 13 \mathrm{c}-\mathrm{H}$ and NH), $4.54(1 \mathrm{H}, \mathrm{br}, 8 \mathrm{a}-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{t}, J 8.3,4 \mathrm{~b}-\mathrm{H}), 5.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $13 \mathrm{~b}-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.93(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, J$ 8.8, 15-H), 7.71 ($2 \mathrm{H}, \mathrm{ov}, 2$ - and $3-\mathrm{H}$), 8.01 ($2 \mathrm{H}, \mathrm{ov}, 1-$ and $4-\mathrm{H}$) and $8.11(1 \mathrm{H}$, br d, $J 7.3,16-\mathrm{H}) ; m / z 413\left(\mathrm{M}^{+}\right)$.

Conversion of endo-adducts 5 into acridines 7

General procedures for treatment with hydrochloric acid. A solution of endo-adduct $5 \mathbf{a}(0.100 \mathrm{~g}, 0.28 \mathrm{mmol})$ in ethanol (5 cm^{3}) containing one drop of $12 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was heated under reflux for 12 h . Usual work-up with column chromatography gave the acridine $7 \mathrm{a}(0.029 \mathrm{~g}, 29 \%)$.

10,12-Dimethyl-r-4b,7,8,c-8a, $9,10,11,12,13, \mathrm{c}-13 \mathrm{~b}, \mathrm{c}-13 \mathrm{c}, 14-$ dodecahydrocyclohepta $[\mathrm{mn}]$ pyrimido $[4,5-\mathrm{c}]$ acridine-8,11,13trione 7a was obtained as plates from ethanol-chloroform; $\mathrm{mp} 268^{\circ} \mathrm{C}$ (decomp.) (Found: C, 69.1; H, 5.85; N, 11.5. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $69.40 ; \mathrm{H}, 5.83 ; \mathrm{N}, 11.56 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3350(\mathrm{NH})$ and 1690,1650 and $1645(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.39(1$ H, dd, $J 7.3$ and 18.3, $9-\mathrm{H}$), $2.66(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 19.8, $7-\mathrm{H}$), 2.77 (1 H , ddd, J 3.7, 5.9 and $9.5,13 \mathrm{c}-\mathrm{H}$), $2.90(1 \mathrm{H}$, ddd, $J 2.9$, 4.4 and $19.8,7-\mathrm{H}$), $3.31(1 \mathrm{H}, \mathrm{d}, J 18.3,9-\mathrm{H}), 3.37$ and 3.50 (each 3 H , each s, $10-\mathrm{and} 12-\mathrm{Me}), 3.76(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $7.3,8 \mathrm{a}-\mathrm{H})$, $3.88(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 4.27-4.34$ (2 H , ov, 4b- and $13 \mathrm{~b}-\mathrm{H}$), 5.93 (1 H , ddd, $J 4.4,7.3$ and $10.3,6-\mathrm{H}), 6.53-6.61(2 \mathrm{H}$, ov, $1-$ and $5-$ H), $6.75(1 \mathrm{H}, \mathrm{t}, J 7.3,3-\mathrm{H})$ and $6.97-7.05(2 \mathrm{H}, \mathrm{ov}, 2-\mathrm{and} 4-\mathrm{H})$; $m / z 363\left(\mathrm{M}^{+}\right)$.

General procedures for treatment with lewis acids. A solution of endo-adduct $5 \mathbf{d}(0.050 \mathrm{~g}, 0.13 \mathrm{mmol})$ and aluminium chloride $(0.004 \mathrm{~g}, 0.12 \mathrm{mmol})$ in dry dichloromethane ($3 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . The reaction mixture was washed with water and the aqueous layer was extracted with dichloromethane. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness. The residue was subjected to column chromatography on silica gel with hexane-ethyl acetate ($1: 2$) which gave the acridine $7 \mathrm{~d}(0.043 \mathrm{~g}, 86 \%$).

2-Methoxy-10,12-dimethyl- $r-4 \mathrm{~b}, 7,8, c-8 \mathrm{a}, 9,10,11,12,13, c-13 \mathrm{~b}$, c-13c,14-dodecahydrocyclohepta $[\mathrm{mn}]$ pyrimido [4,5-c]acri-dine-8, 11,13-trione 7d was obtained as pale yellow prisms from ethanol-chloroform; mp $231-233^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3340$ (NH) and 1690, 1650 and $1640(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.39(1 \mathrm{H}$, dd, $J 7.3$ and $18.1,9-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $19.5,7-\mathrm{H}), 2.74$ (1 H, ddd, $J 3.4,6.4$ and $9.8,13 \mathrm{c}-\mathrm{H}$), $2.90(1 \mathrm{H}$, ddd, $J 2.9,4.4$ and 19.5, $7-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $18.1,9-\mathrm{H}), 3.37$ and 3.49 (each 3 H , each s, $10-$ and $12-\mathrm{Me}$), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.74(1 \mathrm{H}$, dd, $J 6.4$ and $7.3,8 \mathrm{a}-\mathrm{H}), 3.71-3.74(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 4.23(1 \mathrm{H}, \mathrm{t}, J$ $9.8,4 \mathrm{~b}-\mathrm{H}$), 4.34 ($1 \mathrm{H}, \mathrm{d}, J 3.4,13 \mathrm{~b}-\mathrm{H}$), 5.91 (1 H , ddd, $J 4.4,7.8$ and $10.3,6-\mathrm{H}$), $6.06(1 \mathrm{H}, \mathrm{d}, J 2.4,1-\mathrm{H}), 6.34(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $8.3,3-\mathrm{H}), 6.55(1 \mathrm{H}$, ddd, $J 2.9,9.8$ and $10.3,5-\mathrm{H})$ and $6.92(1 \mathrm{H}$, d, $J 8.3,4-\mathrm{H}$); $\delta_{\mathrm{C}}(68 \mathrm{MHz} 26.3$ (C-9), 28.1 ($10-\mathrm{Me}$), 30.9 (12Me), 36.0 and 38.1 ($\mathrm{C}-7$ and -13 c), 41.7 and 43.5 ($\mathrm{C}-4 \mathrm{~b}$ and $-8 \mathrm{a}), 48.2$ (C-13b), 55.1 (OMe), 99.4 (C-1), 107.3 and 107.2 (C-3 and -13a), 116.0 (C-4a), 127.9 and 130.0 (C-5 and -6), 136.0 (C4), 146.9 (C-14a), 149.9 (C-9a), 151.8 (C-11), 158.5 (C-2), 162.4 (C-13) and 208.9 (C-8); m/z $393\left(\mathrm{M}^{+}\right)$.

A similar conversion of endo-adduct 5e gave a $\sim 1: 1$ mixture of 2,10,12-trimethyl-(7e-1) and 4,10,12-trimethyl- $r-4 \mathrm{~b}, 7,8, c-$ 8a, $9,10,11,12,13, c-13 \mathrm{~b}, \mathrm{c}-13 \mathrm{a}, 14$-dodecahydrocyclohepta $[\mathrm{mn}]-$

Fig. 2 ORTEP drawing of compound 5b with crystallographic numbering scheme
pyrimido $[4,5-c]$ acridine-8,11,13-trione (7e-2). These isomers could not be separated from each other by the usual procedures. The acridine 7 e was obtained as pale yellow prisms from ethanol-chloroform; mp $273-275^{\circ} \mathrm{C}$ (decomp.) (Found: C, 70.1; $\mathrm{H}, 6.1 ; \mathrm{N}, 11.0 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.01 ; \mathrm{H}, 6.14$; $\mathrm{N}, 11.13 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and 1690,1650 and 1640 (CO); $m / z 377\left(\mathrm{M}^{+}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 2.21$ and 2.29 (each 3 H , each s, Me), 2.30-2.42 (total $2 \mathrm{H}, \mathrm{ov}, 2 \times 9-\mathrm{H}$), 2.60-2.68 (total 2 H , $\mathrm{ov}, 2 \times 7-\mathrm{H}), 2.74(1 \mathrm{H}$, ddd, $J 2.2,4.9$ and $19.5,13 \mathrm{c}-\mathrm{H})$ and 2.83 (1 H , ddd, $J 3.4,5.4$ and $19.1,13 \mathrm{c}-\mathrm{H}$), 2.93 (1 H , ddd, $J 2.9$, 4.4 and $19.5,7-\mathrm{H}$) and 3.17 (1 H , ddd, $J 2.9,4.9$ and $19.1,7-\mathrm{H}$), $3.24(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and $18.1,9-\mathrm{H})$ and $3.30(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and 18.1, $9-\mathrm{H}$), 3.37, $3.38,3.45$ and 3.51 (each 3 H , each s, $10-$ and $12-\mathrm{Me}), 3.73(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and $6.8,8 \mathrm{a}-\mathrm{H})$ and $3.78(1 \mathrm{H}, \mathrm{dd}, J$ 5.4 and $6.0,8 \mathrm{a}-\mathrm{H}), 3.88($ total $2 \mathrm{H}, \mathrm{ov}, 2 \times \mathrm{NH}), 4.16(1 \mathrm{H}, \mathrm{d}, J$ 2.9, 13b-H) and $4.30(1 \mathrm{H}, \mathrm{d}, J 2.9,13 \mathrm{~b}-\mathrm{H}), 4.23-4.29$ (total 2 H , $\mathrm{ov}, 2 \times 4 \mathrm{~b}-\mathrm{H}), 5.81-5.93(2 \mathrm{H}, \mathrm{ov}, 2 \times 6-\mathrm{H}), 6.37(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and 6.47 ($1 \mathrm{H}, \mathrm{d}, J 7.8,1-\mathrm{H}), 6.50-6.59$ (total 3 H , ov, ArH), 6.67 ($1 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{H}$) and 6.91-6.95 (total $2 \mathrm{H}, \mathrm{ov}, \mathrm{ArH}$); $\delta_{\mathrm{C}}(68 \mathrm{MHz}) 20.6$ and $21.1(\mathrm{Me}), 26.5$ and $27.0(\mathrm{C}-9), 28.1$ and 28.2 ($10-\mathrm{Me}$), 31.0 and 31.7 (12-Me), 35.7, 36.4, 38.4 and 39.6 (C-7 and -13c), 41.0, 41.7, 43.7 and 43.9 (C-4b and -8a), 48.6 and 49.4 (C-13b), 107.0 and 107.4 (C-13a), 113.9 and 115.9 (C1), 121.0, 121.1, 122.9 and 123.4 (C-3 and -4a), 126.6, 127.5, 128.1 and 129.2 (C-5 and -6), 134.5, 136.0, 136.6 and 136.8 (C-2 and -4), 146.1 and 147.5 (C-14a), 149.9 and 150.1 (C-9a), 152.0 (C-11), 162.5 (C-13) and 208.9 (C-8).

Conversion of exo-adducts 6 into cycloheptaquinazoline 8

General procedures. A solution of exo-adduct 6 a $(0.100 \mathrm{~g}$, 0.28 mmol) in ethanol ($5 \mathrm{~cm}^{3}$) containing three drops of 12 mol dm^{-3} hydrochloric acid was heated under reflux for 24 h . The mixture was evaporated to dryness and the residue was extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$). Usual work-up with column chromatography gave the cycloheptaquinazoline 8 ($0.021 \mathrm{~g}, 29 \%$).

Table 4 Crystal data for compounds $\mathbf{5 b}, \mathbf{6 b}$ and $7 \mathbf{f}$

	5b	6b	7f
Molecular formula	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$
Relative molecular mass	442.31	442.31	413.48
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / c(\# 14)$	$P 2_{1} / \mathrm{c}(\# 14)$	$\mathrm{P} 2_{1} / \mathrm{c}$ (\#14)
Cell constants			
$a(\AA)$	11.169(2)	10.790(3)	8.02(2)
$b(\AA)$	13.513(2)	$11.126(4)$	11.015(6)
$c(\AA)$	13.471(2)	17.003(2)	$22.443(7)$
$\beta\left({ }^{\circ}\right)$	108.72(1)	107.16(1)	97.69(6)
$V\left(\AA^{3}\right)$	1925.6(4)	1950.2(8)	1964(4)
Z			
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.526	1.506	1.398

Fig. 3 ORTEP drawing of compound 6b with crystallographic numbering scheme

1,3-Dimethyl-2,3,4,10-tetrahydro-1 H-cyclohepta[g]quinazo-line-2,4,10-trione 8 was obtained as yellow needles from ethanol-chlorofom; mp $210-212{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.0 ; \mathrm{H}$, 4.6; $\mathrm{N}, 10.2 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.15 ; \mathrm{H}, 4.51 ; \mathrm{N}$, $10.44 \%)$; $v_{\text {max }} / \mathrm{cm}^{1} 1700$ and $1650(\mathrm{CO}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 3.53$ and 3.74 (each 3 H , each s, 1 - and $3-\mathrm{Me}$), 6.74 ($1 \mathrm{H}, \mathrm{ddd}, J 1.1,8.1$ and $11.4,7-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{dd}, J 1.1$ and $12.1,9-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{ddd}, J$ $1.1,8.1$ and $12.1,8-\mathrm{H}), 7.44(1 \mathrm{H}, \mathrm{d}, J 11.4,6-\mathrm{H}), 8.35(1 \mathrm{H}, \mathrm{s}, 5-$ H) and $8.58(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}) ; \delta_{\mathrm{C}}(68 \mathrm{MHz}) 28.8(1-\mathrm{Me}), 31.3(3-\mathrm{Me})$, 115.5 (C-8), 118.4 (C-4a), 126.1 (C-6), 130.8 (C-5a), 134.9, 136.1 and 136.8 (C-5, -7 , and -11), 138.7 (C-9), 140.7 (C-10a), 143.0 (C$11 \mathrm{a}), 150.9$ (C-2), 161.1 (C-4) and 187.1 (C-10); $m / z 268\left(\mathrm{M}^{+}\right)$.

Single-crystal X-ray structure determinations

Single crystals (prisms) of compound $\mathbf{5 b}, \mathbf{6 b}$ and $7 \mathbf{f}$ for X-ray diffraction studies were recrystallised from ethanol. A crystal of approximate dimensions of $0.240 \times 0.460 \times 0.540 \mathrm{~mm}$ was used for data collection of compound $\mathbf{5 b}$, one of $0.240 \times 0.240 \times 0.260 \mathrm{~mm}$ of compound $\mathbf{6 b}$ and one of $0.040 \times 0.0400 \times 0.460 \mathrm{~mm}$ of compound 7 f . All measure-

Fig. 4 ORTEP drawing of compound 7 f with crystallographic numbering scheme
ments were made on a Rigaku AFC5S diffractometer by employing graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. The unit-cell dimensions were obtained by least-squares analysis of 24 or 25 reflections within the range $37.25<2 \theta<39.69^{\circ}$ for compound 5b, $34.49<2 \theta<39.88^{\circ}$ for compound 6b and $20.24<2 \theta<25.22$ for compound 7f, respectively. Summaries of the crystal data for compound $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 f}$ are given in Table 4. The $\omega-2 \theta$ scan technique to a maximum 2θ-value of 55° was used. Scans of $(1.42+0.30 \tan \theta)^{\circ}$ were made at a speed of $32.0^{\circ} \mathrm{min}^{-1}$ (in omega) for compound $\mathbf{5 b}$, of $(0.79+0.30 \tan$ $\theta)^{\circ}$ at a speed of $32.0^{\circ} \mathrm{min}^{-1}$ for compound $\mathbf{6 b}$, and of $(1.00+$ $0.30 \tan \theta)^{\circ}$ at a speed of $32.0^{\circ} \mathrm{min}^{-1}$ for compound 7f. A total of 4848 observed reflections (unique: $4620 ; R_{\mathrm{im1}} 0.082$) for compound 5b, 4955 (unique: $4711 ; R_{\text {int }} 0.063$) for compound $\mathbf{6 b}$, and 5098 (unique: $4766 ; R_{\text {int }} 0.127$) for compound 7 f were collected. All calculations were performed using the TEXSAN program. ${ }^{8}$ Atoms other than hydrogen were refined anisotropically. The structures were solved by direct methods (MITHRIL) 9 and refined by least squares to $R \quad 0.072$ (compound 5b), 0.059 (compound 6b) and 0.061 (compound 7f). ORTEP ${ }^{10}$ drawings of compounds $5 \mathbf{5 b}, 6 \mathrm{~b}$ and $7 \mathbf{f}$ are shown in Figs. 2, 3 and 4, respectively. \ddagger

[^0]Computational procedure. The structural data of compounds $\mathbf{5 b}$ and 7f, confirmed by X-ray structure analyses, were used as initial geometries, and the structures of the parent heterocycles 5a and 7a were fully optimerised individually by the PM3 method ${ }^{11}$ using the MOPAC program (Version 6.00) ${ }^{12}$ on the VAX 4000 in Ube Laboratory, Corporate Research \& Development, Ube Industries Ltd. The calculated heats of formation are summarised in Fig. 1.

Acknowledgements

We thank Professors M. Tashiro and S. Kanemasa of Kyushu University for the elemental analyses and mass and NMR spectra. We are also thankful to Dr K. Terao of Wacker Chemical East Asia Limited for a gift of 6-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione.

References

1 Part 13, T. Inazumi, E. Harada, T. Mizukoshi, Y. Kuroki, A. Kakehi and M. Noguchi, J. Chem. Soc., Perkin Trans. I, 1994, 565. 2 (a) M. Noguchi, K. Sakamoto, S. Nagata and S. Kajigaeshi, J. Heterocycl. Chem., 1988, 25, 205; (b) M. Noguchi, Y. Kiriki and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 1989, 62, 3043; (c) M. Noguchi, K. Doi, Y. Kiriki and S. Kajigaeshi, Chem. Lett., 1989, 2115; (d)
M. Noguchi, Y. Kiriki, T. Ushijima and S. Kajigaeshi, Bull. Chem. Soc. Jpn., 1990, 63, 2938.
3 (a) Y. Fujise, H. Saito and S. Ito, Tetrahedron Lett., 1976, 1117; (b) M. E. Grast, V. A. Roberts and C. Prussin, J. Org. Chem., 1982, 47, 3969; (c) M. E. Grast, V. A. Roberts, and C. Prussian, Tetrahedron, 1983, 39, 581; (d) M. E. Grast, V. A. Roberts, K. N. Houk and N. G. Rondan, J. Am. Chem. Soc., 1984, 106, 3882; (e) J. H. Rigby, T. L. Moore and S. Rege, J. Org. Chem., 1986, 51, 2398. 4 Y. Fujise, H. Saito and S. Ito, Tetrahedron Lett., 1970, 2873.
5 H. Takeshita, Y. Wada, A. Mori and T. Hatsui, Chem. Lett., 1973, 335.

6 D. M. Bradby and G. I. Fray, J. Chem. Soc., Perkin Trans. I, 1972, 195.

7 T. Kobayashi, K. Ikuno, M. Noguchi and A. Kakehi, following paper.
8 Texan TEXRAY, Structure Analysis Package, Molecular Structures Corporation, The Woodland, Texas, 1985.
9 C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42.
10 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
11 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209, 221
12 J. J. P. Stewart, Frank J. Seiler Research Laboratory, U.S. Air Force Academy, Colorado Springs, Colorado 80840, USA.

Paper 4/06787H
Received 7th November 1994 Accepted 6th December 1994

[^0]: \ddagger Tables of atomic coordinates, bond lengths and bond angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors (1995), Issue 1.

